
Detecting Approximate Clones in
Business Process Models

Marcello La Rosa∗,a,b, Marlon Dumasc, Chathura C. Ekanayakea, Luciano
Garcı́a-Bañuelosc, Jan Reckera, Arthur H.M. ter Hofstedea

a Queensland University of Technology, Australia
b NICTA Queensland Lab, Australia

c University of Tartu, Estonia

Abstract

Empirical evidence shows that repositories of business process models used in
industrial practice contain significant amounts of duplication. This duplication
arises for example when the repository covers multiple variants of the same pro-
cesses or due to copy-pasting. Previous work has addressed the problem of effi-
ciently retrieving exact clones that can be refactored into shared subprocess mod-
els. This article studies the broader problem of approximate clone detection in
process models. The article proposes techniques for detecting clusters of approx-
imate clones based on two well-known clustering algorithms: DBSCAN and Hi-
erarchical Agglomerative Clustering (HAC). The article also defines a measure of
standardizability of an approximate clone cluster, meaning the potential benefit of
replacing the approximate clones with a single standardized subprocess. Experi-
ments show that both techniques, in conjunction with the proposed standardizabil-
ity measure, accurately retrieve clusters of approximate clones that originate from
copy-pasting followed by independent modifications to the copied fragments. Ad-
ditional experiments show that both techniques produce clusters that match those
produced by human subjects and that are perceived to be standardizable.

Key words: Business process model, clone detection, standardization.

∗Corresponding author
Email addresses: m.larosa@qut.edu.au (Marcello La Rosa),

marlon.dumas@ut.ee (Marlon Dumas),
chathura.ekanayake@student.qut.edu.au (Chathura C. Ekanayake),
luciano.garcia@ut.ee (Luciano Garcı́a-Bañuelos), j.recker@qut.edu.au (Jan
Recker), a.terhofstede@qut.edu.au (Arthur H.M. ter Hofstede)

Preprint submitted to Journal of Systems and Software January 22, 2014

Marcello La Rosa
Rectangle

1. Introduction

Ample evidence suggests that duplication is a widespread phenomenon in soft-
ware and model repositories [1, 2]. Not surprisingly, duplication is also found in
repositories of business process models used in industrial practice [3]. Clones in
process model repositories emerge for example as a result of copy-pasting, but
also when multiple variants of a process co-exist and are described as separate
models. For example, an insurance company typically runs multiple claims han-
dling processes for different types of claims. Naturally, these process variants
share commonalities, which manifest themselves in the form of clones.

Detecting clones in process models allows modelers to identify opportunities
for standardization and refactoring. For example, consider the case of multiple
variants of an insurance claims handling process, where each variant is captured
as a separate process model. Given that disbursement of the insurance payout oc-
curs in every variant (albeit differently depending on the type of claim), it is likely
that these separate models will contain clones corresponding to disbursement ac-
tivities. These clones can potentially be standardized, i.e. replaced by a single
clone instance, and refactored as a shared subprocess. In this way, duplication is
reduced and uniformity across process models is increased, to the benefit of model
maintainability. Moreover, standardized processes are associated with increased
process performance [4, 5, 6].

Standardization of clones however is only possible if the clones to be standard-
ized are either exact clones or they are sufficiently similar that they can be replaced
by a standardized fragment with minor changes to each original clone. Indeed,
while some changes to a clone may be lexical (e.g. uniformizing the nomencla-
ture of tasks), other changes may entail alterations to the underlying process, such
as adding or skipping a task, leading to similar fragments that may or may not be
standardizable depending on the business implications of the change.

The problem of clone detection has been widely studied in the field of software
engineering, primarily in the context of source code clone detection, but also in
the context of model clone detection (e.g. clones in Simulink models) [2, 7]. In
this context, a distinction is made between four types of clones [2], which can be
defined in the context of process models as follows:

• Type-1 (also called exact clones): Identical fragments except for layout vari-
ations and comments.

2

• Type-2: Syntactically identical fragments except for layout variations, com-
ments and labeling variations (e.g. different task, event or data object labels
with the same semantics).

• Type-3 (also called approximate clones [8] or near-miss clones): Copied
fragments with further modifications such as changed, added or removed
model elements in addition to variations allowed in Type-2 clones.

• Type-4: Behaviorally equivalent fragments with syntactic differences (e.g.
fragments with different combinations of gateways but same set of traces).

In previous work, we proposed a technique for identifying Type-1 (exact)
clones in process models [9]. This technique can also be adapted to detect Type-
2 clones by pre-processing the labels of model elements and replacing seman-
tically equivalent labels with a standard label. However, this technique cannot
detect Type-3 (approximate) clones, which are arguably likely to emerge in pro-
cess model repositories when modelers copy-paste fragments across models – thus
creating exact clones – and later on these exact clones evolve separately.1

To address this gap, this article presents and compares two techniques for
identifying Type-3 (approximate) clones in repositories of process models for the
purpose of standardizing and refactoring them as shared subprocesses. The article
also proposes and validates a measure of standardizability of a set of approximate
clones, meaning a measure of the feasibility of replacing the clones with a single
shared subprocess. This measure captures the tradeoff between the magnitude of
changes required to achieve standardization and the simplification benefits that
standardization yields.

The proposed techniques and standardizability measure are evaluated in a
three-pronged manner. First, we report on runtime performance and character-
istics of the clusters obtained by applying the two clustering techniques on two
datasets from practice. Second, using a synthetic dataset, we evaluate the accuracy
of the two techniques given the task of retrieving groups of clones that emanate
from a single original fragment. Third, we report two experiments in which we
compare the proposed techniques in terms of: (i) their ability to retrieve groups of
clones that human subjects perceive to be standardizable (that is, replaceable and
refactored as a single shared subprocess); and (ii) their ability to replicate clusters
produced by human subjects.

1Type-4 clone detection in process models, while potentially relevant, deserves a separate treat-
ment as it involves a very different set of techniques (behavioral equivalence checking).

3

The paper is organized as follows. Section 2 defines and justifies the notion of
approximate clone adopted in this paper and the proposed measure of standard-
izability. Next, Section 3 introduces techniques for process model parsing and
exact clone detection, which are used as the basis for the proposed techniques.
Section 4 presents the techniques, while Section 5 describes their implementation
in the Apromore process model repository system [10]. Section 6 presents the
results of the evaluation. Finally, Section 7 frames the contributions in relation
to the literature while Section 8 concludes and discusses limitations and possible
extensions of the research.

2. Approximate Clones and Standardizability

This section defines the notion of similarity adopted in this paper and, on this
basis, it defines a notion of approximate clone cluster and a measure of standard-
izability for approximate clone clusters.

2.1. Process Model Similarity
When designing an approximate clone detection method, a first step is to de-

fine what an approximate clone is. Generally, such a definition relies on a similar-
ity or (equivalently) a distance metric. The similarity of process models specified
in a graph-based notation can be measured on the basis of three complementary
aspects: (i) the labels attached to tasks, events and other model elements; (ii) their
graph structure; and (iii) their execution semantics. In this paper, we adopt a mea-
sure that combines structural and label similarity and that has been shown to be
correlated with perceived similarity [11]. This measure is defined over an abstract
representation of process models based on labelled graphs, as follows.

Definition 1 (Process graph) Let L be a set of labels. A process graph H is a
(weakly) connected labelled graph (V,E, λ) where V is the set of vertices, E ⊆
V × V is the set of edges, and λ : V → L is a function that maps vertices to
labels.

Note that this notion of process graph is able to capture not only control-flow
elements of process models (e.g. tasks, events and gateways), but also data objects
attached to tasks or events. It is also possible to represent resource pools (roles)
as nodes that are attached to tasks via edges. The adopted representation does not
restrict the types of nodes that appear in the process model.

The adopted similarity measure is based on the well-known graph-edit dis-
tance [12]. The graph-edit distance of two graphs is the minimal set of edit

4

operations required to transform one graph into the other. There are three edit
operations: vertex substitution, vertex insertion/deletion and edge insertion/dele-
tion. A vertex substitution refers to the fact that a vertex in one of the graphs is
mapped to a vertex in the other graph. To define a valid vertex substitution, we
require a notion of vertex similarity. In this respect, we consider that vertices are
matched according to their label similarity measured in terms of string-edit dis-
tance, denoted as Simled(label1, label2).2 A vertex substitution is only allowed
if the similarity between their labels is above a user-defined threshold (e.g. 0.4).
Whenever a vertex in a graph is not matched to any vertex in the other graph, it is
considered as either inserted in one graph or deleted in the other one. Similarly,
an edge insertion (or deletion) operation is required for each edge that cannot be
mapped to an edge in the other graph. This intuition is formalized as follows.

Definition 2 (Normalized process graph edit distance [11]) Let H1 =
(V1, E1, λ1) and H2 = (V2, E2, λ2) be two process graphs. Let M : V1 9 V2 be a
partial injective mapping that maps vertices of H1 to vertices ofH2. Moreover, let
subv be the set of substituted vertices, i.e., ∀v ∈ subv : v ∈ dom(M) ∪ cod(M),
skipv the set of skipped vertices, i.e., ∀v ∈ skipv : v /∈ dom(M) ∪ cod(M), and
skipe the set of skipped edges, i.e., ∀(v, w) ∈ skipe : v /∈ dom(M) ∪ cod(M) ∨
w /∈ dom(M)∪ cod(M). The normalized graph edit distance induced by mapping
M is:

DistMGED(H1, H2) = average(fskipv , fskipe, fsubn) (1)

where fskipv is the fraction of skipped vertices, fskipe the fraction of skipped
edges, and fsubv the average distance between substituted vertices, i.e. fskipv =
|skipv|
|V1|+|V2| , fskipe = |skipe|

|E1|+|E2|m and fsubv =
2·
∑

(v,w)∈M 1−Simled(λ1(v),λ2(w))

|E1|+|E2| , where
Distled is the string-edit distance between vertex labels.3

Finally, the normalized graph-edit distance between H1 and H2, written
DistGED(H1, H2), is the smallest DistMGED(H1, H2) across all mappings M .

A DistGED of 0 means that the process graphs are identical, while a DistGED
of 1 implies that the process graphs are completely dissimilar. Consider for exam-
ple the two process fragments shown in Figure 1. In this case, one node appears

2Other measures of label similarity (e.g. semantic ones) can be used as discussed in [11].
3The rationale for the factor of 2 in the definition of fsubv is so that replacement of two nodes

with completely different labels (i.e. Distled(λ1(v), λ2(w)) = 0) is equivalent to deletion of v
and insertion of w.

5

Master
Production

Scheduling -
Interactive

Master
Production

Scheduling -
Single-Item

Master
Production

Scheduling -
Interactive

Master
Production

Scheduling -
Total Planning

Master
Production

Scheduling -
Single-Item

Figure 1: Sample pair of fragments.

in one fragment and not in the other, therefore skipv = 1. Two edges have been
added thus skipe = 2. There is no replacement, thus subn = fsubn = 0. Hence,
DistGED = avg(1/9, 2/6, 0) ∼ 0.15.

The problem of computing the graph-edit distance is NP-Complete [12]. In
this paper, we adopt a greedy heuristic described in [11]. Still, despite the fact
that we use a greedy heuristic, the computation of the DistGED is expensive –
O(n3) where n is the number of nodes of the largest graph.

2.2. Notion of Approximate Clone
Given the measure of similarity defined above, we could simply postulate that

two process model fragments are approximate clones if their graph-edit distance
is below a given user-defined threshold. However, three additional issues ought to
be considered when defining a notion of approximate clone. Firstly, any fragment
g1 is similar to any fragment g2 such that g2 contains g1 or g1 contains g2, provided
that the difference between g1 and g2 falls below the threshold. A definition that
would consider two fragments as approximate clones merely because one contains
the other would lead to many false positives (e.g. in the SAP reference model
there are 8,876 fragments with 13,131 containment relations); this is an issue that
has been widely discussed in the field of code and model clone detection [8].
Secondly, given the goal to identify approximate clones for the sake of refactoring
them into subprocesses and given that subprocesses are invoked according to a
call-and-return semantics, it is necessary that the approximate clones we retrieve
are Single-Entry, Single-Exit (SESE) fragments. Thirdly, we are not interested
in trivial clones consisting of a single activity, since they do not represent an
opportunity for subprocess extraction. These considerations are captured in the
following definitions.

Definition 3 (SESE Process Fragment) Given a process graph H = (V,E, λ),
a SESE process fragment F = (V ′, E ′, λ′) of H is a connected subgraph of H

6

such thatN ′ has a single source node (i.e. a single node without an incoming edge
in E ′) and a single sink node (i.e. a single node without an outgoing edge in E’).

Definition 4 (Approximate Clone Pair) Given a distance metric Dist and a dis-
tance threshold τ , two non-trivial, SESE process fragments g1 and g2 are approxi-
mate clones – written Approx(g1, g2) – iff g1 6⊂ g2, g2 6⊂ g1 and Dist(g1, g2) ≤ τ .

Armed with this latter definition, one can retrieve large amounts of approxi-
mate clone pairs [3]. However, if the goal is to help modelers to identify opportu-
nities for standardization, retrieving all such pairs is of limited use. Instead, given
the goal at hand, analysts need to identify clusters of fragments that can be stan-
dardized towards a single fragment with a bounded amount of changes on each
fragment. Otherwise, some fragments would need to undergo changes during the
standardization that would convert them into arbitrarily different fragments.

Given the goal to retrieve clusters of similar fragments suitable for standard-
ization towards a single fragment, the next question is which fragment in the clus-
ter would serve as the reference fragment towards which other fragments will be
standardized. In this respect, we envisage two alternative approaches to standard-
ize a given set of fragments:

A1. A set of fragments can be standardized by taking the “medoid”4 fragment
as a reference, and standardizing all fragments towards this medoid. If we
wish to bound the number of changes that need to be made to each fragment,
the distance between the medoid and every fragment should thus be below
the chosen bound.

A2. A set of fragments can be standardized by selecting any fragment in the set
as a reference and standardizing all other fragments towards this reference
fragment. If we wish to bound the number of changes that need to be made
to each fragment, the distance between every pair of fragments should be
below the bound, so that indeed any fragment can be selected as the refer-
ence fragment.

These observations lead us to the following definition.

Definition 5 (Approximate Clone Cluster) A set of SESE process model frag-
ments C is a cluster of approximate clones iff one of the following properties
holds:

4In data clustering, a medoid is a representative object of a cluster, i.e. an object whose average
dissimilarity to all other objects in the cluster is minimal.

7

1. ∃g ∈ C ∀g′ ∈ C : Approx (g, g′). In this case, g is called the cluster
medoid.

2. ∀g, g′ ∈ C : Approx (g, g′).

2.3. Measure of Cluster Standardizability
Standardizing a cluster of approximate clones has costs and benefits and these

should be taken into account when deciding which clusters of approximate clones
are more amenable to standardization. The cost (i.e. effort) of standardizing the
fragments of a cluster into a single fragment is determined by many factors, some
of them exogenous to the process models themselves. However, we contend that
this cost is proportional to the amount of elementary changes that will be made to
the fragments in order to standardize them to one common subprocess. Indeed,
each elementary change will require a certain amount of effort to validate (with
business analysts and stakeholders involved in the process) that this change to the
fragment is indeed meaningful and beneficial, and to ensure that the execution of
the process is adapted to this change if required. This observation is supported by
empirical evidence that shows that standardization effort is positively correlated
with the amount of variation in the process [6].

Accordingly, we use the absolute GED (DistAGED(H1, H2)) defined in the
same way as DistGED(H1, H2) in Definition 2 but replacing fskipv and fskipe
with |skipv|, |skipe| respectively, and removing the denominator in the definition
of fsubv. In other words, we count actual number of edit operations as opposed
to fraction of edit operations relative to total size. We do not used the normalized
GED in this context (DistGED), because this normalized version is not reflec-
tive of the number of operations required to standardize the fragments. Instead,
DistGED is reflective of the percentage difference shared between two models.

In the case of standardization approach A1 (cf. Section 2.2), the medoid frag-
ment serves as reference. Thus, the cost of standardizing the cluster is the sum
of the distances between each fragment in the cluster and the medoid (m), i.e.∑

f∈C DistAGED(f,m). In the case of standardization approach A2, every frag-
ment in the cluster can potentially be used as the reference. Given that the aim is
to maximize the benefit-to-cost ratio, we will pick as reference the fragment that
yields the highest benefit-to-cost ratio.

The benefit of standardizing a cluster of approximate clones and replacing
them with references to a shared subprocess, is proportional to the amount of
reduction in duplication, which reflects itself in a reduction in size of the overall
collection of process models. This size reduction is equal to the sum of the sizes of

8

the fragments in the cluster (since they are removed) to which we subtract the size
of the medoid – since this medoid becomes a new subprocess – and the number of
fragments – since each cluster is replaced by a “call activity” to the subprocess.
In other words, the benefit of standardizing a cluster is

∑
f∈C |f | − |m| − |C|.

Given the above, we define the benefit-to-cost ratio of a cluster obtained with
approach A1 is defined as BCR(C) =

∑
f∈C |f |−|m|−|C|∑

f∈C DistAGED(f,m)
. In the case of stan-

dardization approach A2, we define the benefit-to-cost ratio of a cluster as the
maximum of BCR(C) across all fragments in the cluster.

3. SESE Fragment Extraction and Indexing

This section introduces two basic ingredients of the proposed techniques,
namely the RPST and the RPSDAG, which allow us to efficiently identify SESE
fragments from process models and index them in a way that allows us to identify
exact clones and subsumed fragments.

3.1. RPST
The Refine Process Structure Tree (RPST) [13] is a parsing technique that

takes as input a process model and computes a tree representing a hierarchy of
single-entry single-exit (SESE) fragments. Intuitively, a process model, repre-
sented as a directed graph, is partitioned into sets of edges such that the subgraph
induced by each set of edges is a SESE fragment. SESE fragments are organized
by subset inclusion to form a rooted tree, where siblings are associated to disjoint
sets of edges. As the process graph is partitioned into set of edges, some nodes
may be shared in several SESE fragments. The RPST can be computed for any
process model in linear time and it is unique [13].

A node in an RPST corresponds to a fragment of one out of four types: trivial,
polygon, bond or rigid. A trivial consists of a single edge. A polygon represents
a sequence of fragments. A bond corresponds to a subgraph where all child frag-
ments are adjacent to the entry and exit nodes of the fragment. Any other case
is a rigid fragment. We use the prefixes T, P, B and R to designate the type of
fragment. For example fragment B1 is a bond. This bond appears in three dif-
ferent places (its occurrences are thus exact clones). Meanwhile, bonds B2 and
B4 could be considered as approximate clones, depending on the user-defined
distance threshold. Similarly, one level above, R1, R2 and R3 could also be con-
sidered as approximate clones.

9

!"#$%&'()*+'(,(-".
/+."0"#01(02'#$(..(3

45."('0
6'#3*$"+#-0
!$7(3*/+-8090
:-"('5$"+;(

4<=0/+."0+.0
$'(5"(3

6*'$75.(0
'()*+.+"+#-0
$'(5"(3

6/5--(3
#'3('0$'(5"(30
5*"#,5"+$5//>

?(2(-3(-"0
'()*+'(,(-"0
$'(5"(3 6/5--+-80'(.*/".

#'0."#$%&'(),".0
.+"*5"+#-

+.02'#$(..(3

45."('06'#3*$"+#-0
!$7(3*/+-8090
@;5/*5"+#-

45."('0
6'#3*$"+#-0
!$7(3*/+-8090
!+-8/(9:"(,

A*."#,('0
<()*+'(,(-".0
B$$*''(3

!(25'5"(02/5--+-8
'*-0"#01(0$5''+(30#*"0C#'0
,5."('0.$7(3*/(0+"(,.

!"

#"

$"

#%

#&

$%

(a)

!"#$%&'()*+'(,(-".
/+."0"#01(02'#$(..(3

45."('0
6'#3*$"+#-0
!$7(3*/+-8090
:-"('5$"+;(

45."('0
6'#3*$"+#-0
!$7(3*/+-8090
<#"5/06/5--+-8

45."('0
6'#3*$"+#-0
!$7(3*/+-8090
!+-8/(9:"(,

!"#$

%&

%'

4=>0/+."0+.0
$'(5"(3

6*'$75.(0
'()*+.+"+#-0
$'(5"(3

6/5--(3
#'3('0$'(5"(30
5*"#,5"+$5//?

@(2(-3(-"0
'()*+'(,(-"0
$'(5"(3 6/5--+-80'(.*/".

#'0."#$%&'(),".0
.+"*5"+#-

+.02'#$(..(3

45."('06'#3*$"+#-0
!$7(3*/+-8090
A;5/*5"+#-

%(

#"

@(,5-30
6'#8'5,0
B'(5"(3

!(25'5"(02/5--+-8
'*-0"#01(0$5''+(30#*"0C#'0
,5."('0.$7(3*/(0+"(,.

(b)

!"#$%&'()*+)$#'
,)"$-"&

.-*/01)"234)"#"%-5
645-'-*'7"'8)*/"55"&

9$-")4$6'
)"234)"#"%-5'
86$%%4%+':'
4%&4;4&3$6

<;")$66'
)"234)"#"%-5'
86$%%4%+

9=>'645-'45'
/)"$-"&

(3)/?$5"'
)"23454-4*%'
/)"$-"&

(6$%%"&
*)&")'/)"$-"&'
$3-*#$-4/$66@

!"8"%&"%-'
)"234)"#"%-'
/)"$-"&

(6$%%4%+')"536-5
)'5-/01)"2#-5'

54-3$-4*%
45'8)*/"55"&

9$-")4$6'
)"234)"#"%-5'
86$%%4%+':'
";63-4*%

!"

#$ %&

!'

#(

(c)

!"

#" #$%"

%$ %&

!$

#& #$%"

%' %(

!&

#' #(%"

%)

!"

#" #$

%$ %&

%" #&

%' %(

!$!&

#(#'

%)

!#*+,-. !#*+,/.

!#*+,0. !#*123

(d)

Figure 2: Sample process model fragments, their decomposition into RPSTs and corresponding
RPSDAG. SESE fragments are delimited by dashed rectangles and labelled “R” for rigid, “B” for
bond and “P” for polygon followed by a number. Highlighted boxes represent exact clones.

10

Figures 2(a)–(c) present sample process fragments extracted from models in
the SAP Reference Model [14].5 Each SESE fragment is delimited by a dashed
rectangle. Figure 2(d) shows a tree representation of the RPST of each fragment
in Figures 2(a)–(c). Consider specifically the process model shown in Figure 2(a).
This model contains three bonds (B1, B2 and B3), two polygons (P1 and P2) and
one rigid fragment (R1). The rigid fragment R1 is the root fragment, having B1,
P1, and P2 as children. Polygon P1 is parent of bonds B2 and B3.

3.2. RPSDAG
The RPSDAG [9] is an index structure designed for efficient and accurate iden-

tification of exact clones in a collection of process models. Conceptually, it can be
thought of as the union of a set of RPSTs. A node in the RPSDAG corresponds to
a SESE fragment of a model in the collection, whereas edges encode the contain-
ment relation among SESE fragments. Importantly, each fragment only appears
once in the RPSDAG. Thus, if a fragment appears multiple times, in the same
RPST or in different RPSTs, it is factored out and represented only once in the
RPSDAG. For example, Figure 2(d) shows the RPSTs and the RPSDAG of the
process fragments presented in Figures 2(a)–(c). Note that fragments B1 and P2
are represented only once in the RPSDAG. A node in the RPSDAG that has more
than one parent is an exact clone fragment.

The RPSDAG is built incrementally. When a new process model is added to
the collection, the corresponding RPST is computed and merged into the existing
RPSDAG. The RPSDAG implementation described in [9] incorporates several
optimizations that make it scalable to real-life repositories of process models with
hundreds of models. In addition to identifying exact clones, the RPSDAG allows
us to determine if a process fragment is contained in another – a feature we will
use during clustering.

4. Approximate Clones Clustering

In order to operationalize the standardization approaches discussed in Sec-
tion 2.2, we propose to compute clusters of SESE fragments using adapted ver-

5The sample process models in this paper are captured in the Event-driven Process Chain (EPC)
notation because this is the original notation in which the models are captured. However, the
presented techniques are notation-independent and can be applied for example to models captured
using the standard Business Process Model and Notation (BPMN). The only assumption is that
process models are represented as directed graphs with labeled nodes.

11

sions of existing clustering algorithms. To this end, we reviewed various cluster-
ing algorithms and selected two of them which allowed us, with some adaptations,
to fit each of the two standardization approaches. These are the Density-Based
Spatial Clustering of Applications with Noise (DBSCAN) [15] for the standardiza-
tion approach A1, and the Hierarchical Agglomerate Clustering (HAC) [15] for
approach A2.

Both algorithms assume that the distance between every possible pair of frag-
ments is pre-computed and stored in a distance matrix. Below we discuss the
calculation of this distance matrix, before presenting the algorithms themselves.

4.1. Distance matrix
Given a collection of process fragments of size N, the distance matrix of this

collection is a symmetric matrix of size NxN such that DistGED(s, p) is the
graph-edit distance between fragment s and p. As an optimization and given the
cost of calculating DistGED for two process graphs (cf. Section 2.1), the matrix
only stores the distance DistGED of Definition 2 for a pair of fragments if this is
within the approximate clone threshold τ of Definition 4, and if the two fragments
do not contain one another. For all other fragment pairs, it stores∞.

As a further optimization, we first calculate a lower-bound of the GED. When
this lower-bound is above threshold τ (cf. Definition 4), we do not need to com-
pute DistGED but instead store∞. The lower bound is calculated using the fol-
lowing observations. First, we take the largest of the two graphs (i.e. the one with
more nodes and more edges). Say that H1 is larger than H2 (otherwise we revert
the roles). Now, assuming that H1 is a subgraph of H2, all vertices of H1 can
be substituted by vertices of H2, all edges of H1 are matched with edges of H2,
and no vertices are substituted. The only differences come from the vertices and
edges of H2 that are not in H1. Thus, fskipv =

∣∣∣ |V1|−|V2||V1|+|V2|

∣∣∣, fskipe =
∣∣∣ |E1|−|E2|
|E1|+|E2|

∣∣∣
and fsubv = 0. These are lower-bound values. If the assumption that H1 is not a
subgraph ofH2 is violated, then the GED will necessarily be greater because it en-
tails additional differences. Thus, we conclude that DistGED(H1, H2) is greater
than the one obtained by feeding the above lower-bound values of fskipv, fskipe
and fsubv into the equation for DistMGED(H1, H2) in Definition 2. Note that if
the graphs have equal size, the obtained lower-bound is zero – which is not useful.

4.2. Density-Based Spatial Clustering of Applications with Noise (DBSCAN)
In standardization approach A1, we propose to standardize a set of clones

towards a medoid fragment. Given a cluster, a medoid is an element of the clus-
ter that is the closest to the center of the cluster. In order to avoid arbitrarily

12

large changes to any given fragment, we need to bound the distance between the
medoid and all other elements in the cluster by a certain threshold. A well-known
algorithm that is built upon this principle is DBSCAN. DBSCAN creates clusters
based on the density of neighborhoods. Given a set of objectsO, the neighborhood
of an object o ∈ O is the set of fragments No = {oi ∈ O | d(o, oi) ≤ ε}, where
d(o, oi) is a distance measure between o and oi and ε is the neighborhood radius.
A core object is an object whose |No| ≥ Sizemin, where Sizemin is the minimum
cluster size (we observe that a core object is contained in its neighborhood since
its distance with itself is 0). Thus, we have to specify two parameters for this
algorithm: neighborhood radius and minimum cluster size. In our case, the neigh-
borhood radius coincides with the used-defined distance threshold τ , whereas we
can fix Sizemin to 2 to retrieve clusters of at least two fragments. Here, we use
the notion of graph-edit distance DistGED as the distance measure between two
objects as discussed in Section 2.1.

Standard DBSCAN identifies all core objects of a given dataset and considers
their neighborhoods as initial clusters. If two core objects are within each other’s
neighborhood, their neighborhoods are merged into a single cluster. On the other
hand, if an object does not belong to the neighborhood of any core object, it is
marked as noise. Our adaptation of DBSCAN is described in Algorithm 1. Given
the set of process fragments G extracted from the RPSDAG, the algorithm repeats
the clustering process (Steps 2–14) until all fragments in G have been checked
whether they are core objects. At the beginning of each iteration, a random frag-
ment f is removed from G and marked as “processed”. The neighborhood Nf

of f is computed (Step 3), and if f is a core object the fragments in Nf are re-
moved from G and from Noise (Step 5), and added to a new cluster C (Step 6).
Otherwise f is treated as noise and another fragment is extracted from G. The
algorithm then expands cluster C by checking whether there are core objects in
C whose neighborhoods can be merged with C. This is done by iterating over all
fragments in Nf except f , via a set MC . For a fragment m in MC that has not
been processed, its neighborhood Nm is computed (Step 8) to determine whether
m is itself a core object. If so, before merging its neighborhood with C, we check
whether there is still a medoid s whose distance with all other fragments of the
combined cluster is within τ (Step 10), otherwise we will create clusters whose
fragments are far apart from each other to be standardized. In case of merging, the
fragments in Nm are removed from G and added, except m, to MC (Step 11), so
that they can be checked whether they are core objects. If Nm cannot be merged
with C, m is added back to G so that it can be eventually processed again (Step
12). In fact, Nm may form a cluster by itself or be merged with some other cluster.

13

Algorithm 1: DBSCAN Clustering
Input: Set G of process fragments.
Output: The sets of clusters (Clusters) and noise (Noise).

Initialize Clusters and Noise to empty sets.1

Remove a fragment f from G and mark f as “processed”.2

Retrieve the neighborhood Nf .3

If |Nf | < Sizemin, add f to Noise, then go to 2.4

Remove Nf from G and from Noise.5

Initialize a new cluster C in Clusters with Nf , and a new set MC to6

Nf \ {f}.
Remove a fragment m from MC .7

If m is not “processed”, mark m as “processed” and retrieve Nm.8

If Nm ≥ Sizemin9

If there is a fragment s ∈ C ∪Nm such that for all p ∈ C ∪Nm10

DistGED(s, p) ≤ τ
Remove Nm from G and Noise and add Nm to C and Nm \ {m} to11

MC .
Else, mark m as “unprocessed” and add it to G.12

If MC 6= ∅ go to 7.13

If G 6= ∅ go to 2.14

A fragment’s neighborhood is constructed using the distance matrix. Given
the non-containment relation enforced by this matrix, a fragment cannot be in the
neighborhood of a core object that contains or is contained by it. Still, it is possi-
ble to include two related fragments in a neighborhood if they are both sufficiently
similar to the core object. To prevent this, we retrieve the set of all the ascendants
and descendants of a fragment by computing its transitive closure on the RPS-
DAG, and add to the neighborhood the fragment in the transitive closure that is
the nearest to the core object (the original fragment may thus be discarded in favor
of one of its ascendants or descendants). Further, we mark all other fragments in
the transitive closure as “visited” for that cluster, so that these fragments are not
included in any neighborhood of that cluster.

The complexity of Algorithm 1 is dominated by that of neighborhood com-
putation (Steps 3 and 8), and by that of the merging condition (Step 10). Neigh-
borhood computation for a fragment f requires at most |G| − 1 lookups in the
distance matrix. The exploration of the transitive closure of each neighbor of f

14

requires further |G| − 1 lookups (retrieving the transitive closure of an RPSDAG
node is linear on the RPSDAG size, which is bounded by |G|). Similarly, the
merging condition requires |G|−1 lookups in the distance matrix for all members
of a cluster. As the main loop is repeated |G| times, the overall complexity of Al-
gorithm 1 is O(|G|3). This is higher than the complexity of standard DBSCAN,
which is O(|G|2) [15]. That said, the search space is greatly reduced by the cutoff
conditions used when computing the distance of clusters, i.e. the distance thresh-
old τ and the non-containment relationship. The result is that the distance matrix
is sparse, but the sparsity depends on intrinsic characteristics of the process model
collection. Further, we store each computed neighborhood so that it can be reused
when reprocessing a core object whose neighborhood has not been merged.

4.3. Hierarchical Agglomerate Clustering (HAC)
In standardization approach A2 (cf. Section 2.2), a set of approximate clones

can be standardized by selecting any fragment in the group as a reference and stan-
dardizing all other fragments towards this reference fragment. In other words, we
require that every pair of fragments in a cluster has a distance below the threshold
τ . This goal can be straightforwardly mapped to the strategy followed by the basic
hierarchical agglomerative clustering method [15]. This clustering method starts
with singleton clusters and iteratively combine the pair of clusters that is found to
be the closest among all other possible pairs. The process of merging continues
until there is only one cluster left.

One key issue is the definition of the distance between two clusters, which
needs to be recomputed after every cluster merging. Several possibilities are avail-
able: taking the smallest distance between fragments in one of the clusters to the
fragments in the other one, known as single link; taking the farthest distance, re-
ferred to as complete link; among others. It can be easily see that the complete link
strategy suits well to standardization approach A2, as it allows us to identify the
cluster mergings that will not meet the requirement of keeping a distance below
the threshold τ . Note that the identification of such situation can be accomplished
ahead of time. The intuition is captured in the following definition.

Definition 6 (Distance of clusters under complete link strategy) Let Ci and
Cj be clusters in the dendrogram built by a hierarchical clustering algorithm,
and τ be the similarity threshold among fragments of Ci and fragments of Cj .
Moreover, let F(C) be a function that returns the set of fragments associated to
C, inductively defined as follows: (BASE) if C is a leaf node in the dendrogram,
C is a singleton and refers to a single fragment, say f , then F(C) = {f}; (STEP)

15

if C is an intermediate node then F(C) = ∪c∈CF(c). The distance of clusters Ci
and Cj , denoted as Dist(Ci, Cj), can defined as follows.

∞ if ∃f ∈ F(Ci), g ∈ F(Cj) : g ⊆ f ∨ f ⊆ g
∞ if maxf∈F(Ci),g∈F(Cj)DistGED(f, g) > τ
maxf∈F(Ci),g∈F(Cj)DistGED(f, g) otherwise

We note that the distance of two clusters is set to ∞ when there exist one
fragment in the first cluster which is in containment relationship with another
fragment in the second cluster. Moreover, when farthest distance between frag-
ments of both clusters is above the threshold τ , the distance is set to ∞. In the
two previous cases, we are meeting the constraints described in Definitions 4 and
5. Finally, the farthest distance between fragments of both clusters is reported as
the distance of the clusters, only when the value is less or equal to the thresh-
old τ . Algorithm 2 corresponds to the modified version of the basic hierarchical
agglomerative method adapted for clustering approximate clones.

Algorithm 2: Hierarchical Agglomerative Clustering
Input: Set G of process fragments.
Output: The set of maximal clusters, viz. TopClusters.

For each f ∈ G create a singleton cluster. Initialize TopClusters to1

contain all singleton clusters.
Using the distance matrix between fragments, calculate the initial distance2

matrix between clusters in TopClusters, i.e. D[i, j]← Dist(Ci, Cj),
where Ci, Cj ∈ TopClusters .
In the distance matrix D, select a pair of clusters Ci, Cj ∈ TopClusters3

such that their distance is the minimum. Stop if no such pair exists, i.e.
either all distances in D are∞ or |TopClusters| = 1.
Combine clusters Ci and Cj to form a new cluster Cij . Remove clusters Ci4

and Cj from TopClusters. Add cluster Cij to TopClusters.
Update matrix D by adding the distance between cluster Cij and all other5

clusters in TopClusters.
Go to 3.6

Algorithm 2 can be divided into two parts. Step 1 and 2, initialize the set of
singleton clusters, stores them in TopClusters and initializes the distance matrix
between clusters (according to Definition 6). The remaining steps correspond to

16

the main loop. In Step 3, a pair of clusters is selected such that their distance is
found to be the smallest among all other possible pairs. If the distance of such
pair is ∞ or there is only one cluster left then the algorithm stops. In Step 4, a
new cluster is created to hold the union the previously selected pair. In Step 5,
the distance matrix is updated (according to Definition 6), by removing the pair
clusters previously selected and adding the newly created cluster.

The algorithm starts with a working set of |G| clusters. In every iteration, two
clusters are removed and a new one is added. Hence, the size of the working set
decreases monotonically. The algorithm stops when |TopClusters| = 1 or before
if the entire distance matrix D is filled with∞.

The complexity of Algorithm 2 is dominated by the maintenance of the dis-
tance matrix (i.e., Steps 2 and 5), which has an initial size of O(|G|2). As the
main loop is repeated O(|G| − 1) times, the worst-case upper bound of the com-
plexity is of O(|G|3) [15]. The same simplifications of the search space that we
used for DBSCAN apply to HAC (distance cutoff and non-containment). Also
this algorithm has shown to be efficient in our experience.

5. Implementation

In order to offer concrete support for process standardization initiatives, we
developed a tool based on the proposed technique that allows analysts to iden-
tify, cluster, analyze and visualize approximate clones. The tool is a plugin of
the Apromore advanced process model repository [10].6 Apromore uses an in-
ternal process representation format named canonical process format, which cap-
tures common features of widely-used process modeling languages. The clone
detection plugin operates on this canonical format, thus it can detect approximate
clones in process models defined in different modeling languages such as BPMN
and EPC for example.

The Web interface of the approximate clone detection plugin (shown in Fig. 3)
provides features for creating, browsing and visualizing fragment clusters. Users
can select one or more process models from the repository, specify the clustering
parameters (such as the preferred clustering algorithm), and kick off the cluster-
ing. Once the fragments included in the selected process models have been clus-
tered, users can apply different filtering criteria (i.e. on the size of the clusters, on
the average size of fragments, and on the BCR) and browse the resulting clusters

6Available at www.apromore.org

17

Figure 3: Web interface of the approximate clone detection plugin in Apromore

in a detailed list view. Another useful feature is the visualization of clusters in
the 2D space. The visualization component (shown in Fig. 4) displays each frag-
ment in a cluster as a point in the space and positions fragments within a cluster
according to their distances to the medoid (distances being represented as edges
between the points). It also positions the clusters in the space according to the
GEDs among their medoids. One can also click on the point corresponding to a
process fragment to visualize its corresponding model using any process modeling
language supported by Apromore (e.g. EPCs, BPMN).

Under the hoods, the approximate clone detection plugin relies on three tech-
niques that have also been integrated into Apromore: i) RPST, ii) RPSDAG and
iii) graph-edit distance. In particular, the RPST implementation available in Apro-
more is that distributed with the jBPT library.7. This implementation can also
detect multi-entry-multi-exit (MEME) fragments. This is achieved by adding a
fictitious split node before all entry points and a fictitious join node after all exit
points, to create a SESE fragment out of a MEME fragment. These nodes are re-
moved once the fragment has been processed. An example of a MEME fragment
identified as approximate clone is the one shown in Fig. 4 using the EPC language.

The approximate clone detection functionality is exposed via the Web ser-

7https://code.google.com/p/jbpt/

18

Figure 4: Cluster visualization component of the approximate clone detection plugin in Apromore

vice API of Apromore. Thus, remote applications can programmatically invoke
approximate clone detection on process models available outside Apromore and
filter and browse the identified clones, by using this API.

6. Evaluation

On the basis of the implementation of the two algorithms in Apromore, we
now report on three evaluations of the techniques. First, we use the two tech-
niques to detect approximate clones in process model repositories from practice,
in order to measure their runtime performance, as well as the clusters charac-
teristics in terms of distribution of size and benefit-cost ratio over the clusters
retrieved. We use these results to provide an initial discussion on the differences
between the two techniques (cf. Section 6.1). Second, we use a synthetic dataset
to evaluate the accuracy of the two techniques in terms of correctly retrieving
clusters of process fragments that have evolved via copy-pasting followed by in-
dependent modifications (Section 6.2). Finally, we conduct two between-group
experiments in order to evaluate: i) the perceived standardizability of the clusters
produced by our techniques in comparison with those manually created by users,
and ii) the perceived correctness of the clustering performed by our techniques in
comparison to manual clustering (Section 6.3).

19

6.1. Runtime performance and clusters characteristics
We first used the two clustering techniques to examine the occurrence of ap-

proximate clones in practice and evaluate the runtime performance and the char-
acteristics of the clusters retrieved. For this purpose we looked at two industry-
size datasets. The first dataset is the SAP R/3 reference model [14]. It contains
595 models with sizes ranging from 5 to 119 nodes (average 22.28). The sec-
ond dataset is taken from an insurance company under condition of anonymity.
It contains 363 models ranging from 4 to 461 nodes (average 27.12). We first
computed the RPSDAG for both datasets and post-processed them by factoring
out all exact clones using the technique presented in [9]. This yielded 2,238 non-
trivial fragments with at least 4 nodes for the SAP dataset (11.47 average size)
and 2,037 for the insurance dataset (16.58 average size). We then applied the
two clustering methods independently – having eliminated exact clones to avoid
double-counting. The clustering algorithms were run with a DistGED threshold
of 0.4.

All tests were run on a PC with a dual core Intel processor, 1.8GHz, 4GB
memory, running Microsoft Windows 7 and Oracle Java Virtual Machine v1.6.
The cluster computation is dominated by the computation of the distance matrix
which took 26.3 mins for the SAP dataset and 2.69 hours for the insurance dataset.
The time for clustering itself is negligible in comparison. The longer time taken
for the insurance dataset is justified by the size of its fragments – much larger than
those in the SAP dataset (e.g. the largest fragment in the insurance dataset is a
rigid with 461 nodes whereas the largest SAP fragment contains 117 nodes).

Figure 5 plots the histograms of distribution of cluster sizes for the two
datasets. For the SAP dataset we retrieved 364 clusters with DBSCAN (with
sizes ranging from 2 to 5 fragments per cluster) and 335 clusters for HAC (sizes
between 2 and 13), while for the insurance dataset we retrieved 243 clusters with
DBSCAN (sizes between 2 and 6) and 309 clusters with HAC (sizes between 2
and 10). This confirms the intuition that real-life process model repositories con-
tain a large number of approximate clone clusters, and thus that copy/pasting of
fragments across process models is a very common practice.

Figure 6 shows the histograms of BCR distributions for both datasets. For the
SAP dataset, the great majority of clusters have a very low BCR (there are 294
clusters with a BCR below 2 for DBSCAN and 236 for HAC), with only a few
clusters having very high BCR (there are only 3 clusters with BCR above 7 for
DBSCAN and 22 for HAC). A similar trend is registered for the Insurance dataset
(with 126 clusters below 2 for DBSCAN and 257 for HAC, and only 8 clusters
above 7 for DBSCAN and 4 for HAC). In general, we observe that none of the

20

2 (2, 4] (4, 8] (8, 13]
DBSCAN 225 133 6 0
HAC 207 93 31 4

0

50

100

150

200

250

Cl
us

te
rs

Clusters size (SAP)

2 (2, 4] (4, 8] (8, 10]
DBSCAN 176 63 4 0
HAC 207 76 23 3

0

50

100

150

200

250

Cl
us

te
rs

Clusters size (Insurance)

Figure 5: Number of clusters vs clusters size for both techniques.

techniques is better than the other, since for the SAP dataset we achieve higher
BCRs for HAC than for DBSCAN, whilst for the insurance dataset it is the other
way around. This suggests that depending on the type of the repository, one of the
two techniques might be more appropriate than the other.

6.2. Accuracy
Next, we evaluated the accuracy of the two techniques in retrieving clusters

of clones that have emanated from a single original fragment, by means of copy-
pasting followed by independent changes to the duplicated fragments. We did
so by simulating a situation where new fragments are created by copying a mas-
ter fragment across various models of the repository, and then applying minor
changes. We randomly selected 50 such master fragments from the two industry-
size datasets used in the occurrence analysis, such that they were sufficiently dif-
ferent from each other (pairwise graph-edit distance above 70%).

To test the accuracy of the DBSCAN algorithm, we used these 50 fragments

21

<1 [1, 2) [2, 4) [4, 8) [8, 16) [16, 32) [32, 64)
DBSCAN 7 287 60 7 1 2 0
HAC 147 89 54 23 5 11 6

0

50

100

150

200

250

300

Cl
us

te
rs

Benefit-cost ratio (SAP)

<1 [1, 2) [2, 4) [4, 8) [8, 16)
DBSCAN 2 124 85 24 8
HAC 155 102 37 11 4

0
20
40
60
80

100
120
140
160

Cl
us

te
rs

Benefit-cost ratio (Insurance)

Figure 6: Number of clusters vs benefit/cost ratio for both techniques.

as “seeds” to generate 50 artificial clusters by producing from 2 to 10 variants for
each seed, and grouping each seed with its variants in a cluster. We obtained a
total of 311 fragments in 50 clusters. Seed variants were obtained automatically,
by randomly applying simple change operations (edge/node removal or insertion)
such that the graph-edit distance between a variant and its seed was no more than
40% – the same threshold that we used in the occurrence analysis.8 The clusters’
size ranged from 3 to 10 fragments (average 6.35). We then generated 300 process
models from the two existing datasets, such that none of these models contained
any of the seed fragments, and we randomly inserted the 311 fragments into these
models such that a model would contain from 0 to 2 fragments. We then extracted
the RPSDAG from this dataset and clustered the retrieved fragments using our
DBSCAN. The algorithm retrieved 328 clusters. We matched each artificial clus-
ter with the retrieved fragment that yielded the maximum FScore [17]. FScore is

8The idea of using random mutation of seed fragments to generate synthetic data for evaluating
clone detection methods is also used in [16] in the context of source code clone detection.

22

the harmonic mean of the recall and precision of a retrieved cluster with respect
to (w.r.t.) an artificial cluster. Precisely, given an artificial cluster l and a retrieved
cluster s, the F-Score of s w.r.t. l is F (s, l) = 2·R(s,l)·P (s,l)

R(s,l)+P (s,l)
where R(s, l) and

P (s, l) are the recall and precision of s w.r.t. l.
In order to measure the overall quality of the algorithm, we then computed

the weighted average FScore (Fwa) [17]. Fwa is the maximum FScore of each
artificial cluster weighted against the combined size of all artificial clusters. Let
L be the set of artificial clusters and S the set of retrieved clusters. Then Fwa =∑L

l=1
|l|
|L|F (l), where F (l) = maxs∈S F (s, l).

We repeated the same experiment for the HAC algorithm. In order to ensure
that all fragments in an artificial cluster have pairwise graph-edit distance within
the 40% threshold, we used a random walk approach.

Table 1: Quality metrics for both algorithms.
DBSCAN HAC

Recall

min 0.17 0.1
max 1 1
avg 0.71 0.82
std 0.37 0.25

Precision

min 0.2 0.17
max 1 1
avg 0.89 0.84
std 0.24 0.33

Fwa 0.73 0.77

From each seed we generated a variant with graph-edit distance of at most 0.4.
We chose one of these two fragments and generated another variant such that its
distance to both fragments was at most 0.4, and so on until we generated from 2 to
10 variants for each cluster. This process was carried out automatically, and led to
a total of 289 fragments in 50 clusters, with sizes ranging from 3 to 10 fragments
(average 5.8). We added these fragments to the collection of 300 process models
that was generated in the previous step, and then clustered the fragments retrieved
from the RPSDAG of this collection using HAC. This led to 295 clusters.

The results for both algorithms are reported in Table 1. Besides Fwa, this
table reports the minimum, maximum, average and std. deviation of recall and
precision for the best-matched retrieved cluster for each artificial cluster. The
accuracy of the two algorithms is partly affected by the presence of approximate
clones that exist in the generated process model collections, besides those that
have been generated artificially. Despite this, the results show high Fwa (0.73 for

23

DBSCAN and 0.77 for HAC), as well as high average precision and recall for both
algorithms, demonstrating the accuracy of the algorithms. None of the algorithms
clearly outperforms the other.

Finally, we used the above data to evaluate the ranking accuracy of the BCR.

1 - Specificity
1.00.80.60.40.20.0

Se
ns

iti
vi

ty

1 .0

0.8

0.6

0.4

0.2

0.0

ROC Curve- DBSCAN

Page 1

1 - Specificity
1.00.80.60.40.20.0

Se
ns

iti
vi

ty

1 .0

0.8

0.6

0.4

0.2

0.0

ROC Curve - HAC

Page 1

Figure 7: ROC curves for both algorithms.

For each algorithm, we plotted a ROC curve by ordering the retrieved clusters
from the highest to the lowest BCR. In these curves, we considered a retrieved
cluster as a true positive if it had a recall of 1, and as a true negative otherwise.
The curves, provided in Fig. 7, show that the clusters with highest BCR are indeed
those that most closely match the synthetically generated clusters. This result is
confirmed by the Area Under the Curve which is 0.89 for DBSCAN and 0.72 for
HAC (both with asymptotic significance less than 0.05).

6.3. Perceived standardizability and correctness
Design and Measures

Finally, we designed two between-groups experiments in which users were
presented with process fragments identified through either the DBSCAN or the
HAC technique, and were asked to complete a set of standardization tasks and
provide answers to a number of questions.

Experiment 1 concerned the evaluation of clusters produced by the two tech-
niques in terms of their perceived standardizability. Experiment 2 concerned the
evaluation of the perceived correctness of the clustering performed by the two
techniques in comparison to manual clustering.

24

Experiment 1:
In the first experiment, overall 73 users participated. The majority of partic-

ipants were post-graduate students that learned about process modeling, process
model repositories and clone detection as part of their tertiary education (90%),
followed by academic staff teaching these concepts and methods (8%), and pro-
cess professionals (2%) with knowledge of the subject matter.

Participants, on average, had about 1.7 years of experience with process mod-
eling and had read and/or created on average 28.3 process models over the last
12 months. Participants’ experience with the process modeling language used in
the experiment, EPCs, ranged from 1 month to 5 years, with an average of 4.5
months. The self-reported familiarity with process models created with EPCs was
significantly higher (t = 5.17, p = 0.00) than neutral with an average score of 4.8
on a 7-point scale, with ‘4’ representing the neutral value, indicating sufficient
perceived experience in reading EPC diagrams. Overall, the demographics char-
acterize our participants largely as proxies for novice BPM professionals, with
one of our participants being representative of an expert practitioner (more than
5 years experience, more than 250 models created or read). Overall, our study
population is roughly comparable to the reported demographic distribution of par-
ticipants in related studies [18, 19, 20].

In the experiment, participants were firstly asked to provide demographic in-
formation. Next they were randomly distributed into two groups, with each group
being provided with 5 sets of fragments (each set containing 3 to 5 fragments),
either identified by means of DBSCAN or HAC. For each technique, the 5 sets of
fragments were varied in terms of BCR (from ‘0-2’, ‘2-4’, ‘4-6’, ‘6-8’ and ‘above
8’). For each group, participants were asked to rate the standardizability of that
group on a 5-item scale measuring similarity, complexity, suitability, readiness
and ease of standardizability of the group of fragments. The measurement scales
used are shown in Table 2. Scores for each item in the scale were aggregated to
an average total factor score for the analysis. Additionally, for each group of frag-
ments participants were asked to select a most suitable standardization strategy
from a set of three options:

a) Replacement of all fragments within the cluster with one most suitable frag-
ment from the cluster, which had to be identified; or

b) Replacement of all fragments within the cluster with any fragment from the
cluster; or

c) Insertion of a new fragment as either a

25

a. consolidation of all the fragments within the cluster, or

b. new definition.

For options a) and b), participants were also asked to estimate the likely per-
centage of information loss that would be incurred by standardization through the
selected strategy.

Table 2: Multi-item measurements used in the experiment
Scale ID Measurement Items

Familiarity with EPCs

FAM1 Overall, I am very familiar with the EPC process modeling language.
FAM2 I feel very confident in my understanding of the EPC process modeling

language.
FAM3 I feel very competent in using the EPC process modeling language.

Cluster standardizability

GS1 The process fragments in this cluster are similar to each other.
GS2 The process fragments in this cluster are all equally complex.
GS3 This cluster of process fragments is an ideal candidate for standardization.
GS4 This cluster of process fragments cannot readily be standardized.
GS5 It is very easy to identify an ideal candidate process fragment for standard-

ization in this cluster.

Experiment 2:
In the second experiment, overall 16 users participated. Participants were in-

vited from the cohort of PhD research students and academic staff working at
the University of Tartu in Estonia and Queensland University of Technology in
Australia. In both research groups, participants were actively researching topics
on process modeling and related technologies, making them suitable participants.
Nine doctoral students participated and seven academic staff out of which three
also had professional industry experience in process modeling and process model
repositories. Participants, on average, had about 4.1 years of experience with pro-
cess modeling and had read and/or created on average 71.6 process models over
the last twelve months. The participants’ experience with the EPC process mod-
eling language used ranged from 1 month to 5 years, with an average of 23.8
months. The average self-reported familiarity with process models created with
EPCs was 4.40. These characteristics describe the pool of participants for the sec-
ond experiment as considerably more experienced in process modeling than the
participants in Experiment 1.

In the experiment, each participant was given two collections of process frag-
ments containing 17 and 18 fragments each. The first fragment collection con-
tained 8 fragments classified into 3 clusters by the DBSCAN algorithm along with

26

9 fragments classified as noise. The second collection contained 9 fragments clas-
sified into 3 clusters by the HAC algorithm along with 9 fragments classified as
noise. In both cases, a distance threshold of 40% was used. The 9 noise fragments
of each collection were added by selecting 3 noise fragments per cluster where
the distance between the medoid of the cluster and each noise fragment was more
than 40%. Participants were asked to standardize these collections of fragments
by grouping relevant fragments together into clusters. Based on this experimental
design, we can compare the differences between manual clustering of fragments
versus the clusters produced by the algorithms in terms of two measures:

a) the placement of fragments into a cluster, and

b) the identification of noise.

Additionally, users were again asked to provide relevant demographic infor-
mation in terms of modeling experience, familiarity with the EPC language [21]
and their knowledge of important process modeling concepts such as concurrency
and repetition [22], similar to Experiment 1.

Analysis and Results

Experiment 1:
On the basis of the experimental data obtained, we can perform a number of

evaluations.
First, we examine the perceived standardizability of clusters produced by the

two techniques in terms of overall rating and consistency of rating, in relation to
the i) algorithm used and ii) the BCR of the identified cluster. Table 3 provides
relevant statistics and Fig. 8 visualizes the results in a scatter plot. Specifically, it
shows that based on participants’ perceived standardizability ratings, the produced
sets of clusters fall into two distinct groups. One group (D97, D287, H55, H106)
of clusters were consistently rated as highly standardizable while the remaining
fragments were not only rated lower in standardizability but also rated less con-
sistently. When examining the clusters based on the data in Table 3, we see that
the consistent and highly rated group of clusters is characterized by relative high
BCRs (‘4-6’ and ‘above 8’).

Several findings emerge. The results confirm that it is hard to use clusters with
low BCR for standardization, while clusters with high BCR can effectively be
used for this purpose, as visualized in Fig. 8. We further note that these results are

27

Table 3: Cluster standardizability ratings

ClusterID Technique BCR Standardizability Standardizability
Mean Standard deviation

D151 DBSCAN 0 - 2 4.05 1.48
D56 DBSCAN 2 - 4 3.97 1.46
D97 DBSCAN 4 - 6 4.95 1.28

D364 DBSCAN 6 - 8 4.48 1.55
D287 DBSCAN Above 8 5.07 1.23
H260 HAC 0 - 2 3.72 1.43
H177 HAC 2 - 4 4.42 1.42
H106 HAC 4 - 6 4.54 1.25
H83 HAC 6 - 8 4.43 1.41
H55 HAC Above 8 5.13 1.30

Standard deviation of rating

1.6001.5001.4001.3001.200

A
ve

ra
g

e
st

an
d

ar
d

iz
ab

ili
ty

 r
at

in
g

5.500

5.000

4.500

4.000

3.500

H55

H83

H106

H177 D364

D97

D56
D151

H260

D287

Page 1

Figure 8: Standardizability rating average and standard deviation for clusters

consistent for both DBSCAN and HAC when BCR is high. These results highlight
the importance of filtering out clusters with low BCR and only presenting clusters
with high BCR to business analysts, in a decreasing order, from high to low BCR,
in order to effectively aid the standardization effort. We can also observe there is
no significant difference between the scorings of DBSCAN and HAC when BCR
is high (see Table 4). If clusters with low BCR have to be standardized, however,
we can observe differences between DBSCAN and HAC (see Table 4), suggesting
that clusters generated with HAC might be more appropriate for this purpose due

28

to the lower standard deviation.

Table 4: Average cluster standardizability rating by BCR and technique

BCR Technique N Standardizability Standardizability
mean Standard deviation

Low DBSCAN 3 4.32 0.54
(below 6) HAC 3 4.23 0.44

High DBSCAN 2 4.78 0.42
(above 6) HAC 2 4.78 0.5

Total DBSCAN 5 4.5 0.5
HAC 5 4.45 0.5

Second, we examined participants’ preference for different standardization
strategies in dependence to the cluster of fragments received. Table 5 provides
information about the preferred standardization ratings per cluster, as reported by
overall 32 from the total of 73 participants, an effective response rate of 43.8%
(answering was optional).

Table 5: Reported standardization strategy by cluster
ClusterID Technique BCR Preference

for
strategy a)

Estimated
informa-
tion loss

for
strategy a)

Preference
for

strategy b)

Estimated
informa-
tion loss

for
strategy b)

Preference
for

strategy c)

D151 DBSCAN 0 - 2 15 21.82 3 10 14
D56 DBSCAN 2 - 4 12 13.33 5 25 12
D97 DBSCAN 4 - 6 16 3.93 9 10 6

D364 DBSCAN 6 - 8 18 11.31 5 11.67 6
D287 DBSCAN Above 8 25 4.58 5 5 1
H260 HAC 0 - 2 13 24.58 6 22 15
H177 HAC 2 - 4 18 20.29 4 15 13
H106 HAC 4 - 6 28 16.3 1 4
H83 HAC 6 - 8 13 12.69 6 33 13
H55 HAC Above 8 26 14.2 5 5 2

Overall, participants indicated a clear preference for standardizing fragments
based on a most representative fragment per cluster. Average preference for strat-
egy (a) was 57.6%, with strategy (c) (26.9%) and strategy (b) (15.5%) following
in order. The preference for strategy (a) is also indicated by the estimated infor-
mation loss incurred through the strategy, with the reported average information
loss for strategy (a) (mean = 14.30%, st. dev. = 6.80%) being smaller than that
estimated for strategy (b) (mean = 15.19%, st. dev. = 9.58%). This is the case for
those participants who assessed DBSCAN clusters as well as those who assessed

29

HAC clusters, thus regardless of the type of clusters they were confronted with.
Indeed, differences in preference for strategies (a) to (c) between DBSCAN and
HAC clusters were all insignificant (with p-values ranging from 0.48 to 0.66). It is
worth noting that strategy (a) is implemented by DBSCAN, which constructs clus-
ters based on the vicinity of fragments to a common point, the cluster’s medoid.
Thus, we may conclude that DBSCAN better implements the perceived preference
for standardizing process model fragments by humans.

Participants were also asked to indicate for strategy (a) which one fragment
is most suitable to replace all fragments. The data for clusters produced by DB-
SCAN shows that these participants did not identify this fragment with the medoid
provided by the algorithm. In total, out of 86 responses that provided a preferred
reference fragment for the 5 DBSCAN clusters, only 17 responses designated
the medoid as the reference fragment. Instead, in all cases, the majority of par-
ticipants designated the largest fragment of a cluster as the most representative
(except when all fragments in the cluster had an equal size). This suggests that
subjects were looking for a reference fragment that “covers” as much as possi-
ble all fragments in the cluster (thus larger) rather than a reference fragment with
minimum distance to all other fragments.

Experiment 2:
The data collected in the follow-up experiment allows us to examine the per-

formance of the clustering techniques in comparison to manual clustering per-
formed by end users. The relevant question we ask is: “Does the clustering al-
gorithm produce clusters of process fragments that are similar or very different
compared to those produced by end users?”

A suitable measure to answer this question is the adjusted Rand index [23].
This measure, which ranges from -1 to 1, captures the similarity between sets of
clusters, and is commonly used to measure clustering accuracy. For each tech-
nique, we computed the Rand index between clusters identified by participants,
and between clusters identified by each technique and those identified by the
participants. Finally, we compared the results: i) participants’ clustering with
DBSCAN versus participants’ clustering; ii) participants’ clustering with HAC
versus participants’ clustering; iii) DBSCAN versus participants’ clustering with
HAC versus participants’ clustering. Table 6 summarizes the results. For both
experimental groups, the algorithmic clustering provided increased similarity to
manual clustering when compared to similarity between manual clusterings, with
the difference being significant for the HAC technique (p = 0.02). In the compar-
ison of the similarity of clusterings produced by each of the two techniques and

30

manual clustering, the Rand index is significantly higher (p = 0.04) for the HAC
technique.

Table 6: Rand indices for DBSCAN and HAC in comparison to participants’ clusterings

Technique Comparison Rand index (mean) Rand index (st. dev.) T-statistic
(significance)

DBSCAN
Participants’ clustering 0.672 0.19

1.07(p = 0.30)DBSCAN versus participants 0.713 0.136

HAC
Participants’ clustering 0.715 0.211

2.47 (p = 0.02)HAC versus participants 0.836 0.18

Both
DBSCAN versus participants 0.713 0.136

2.19 (p = 0.04)HAC versus participants 0.836 0.18

The experiment also allows us to examine how well users can identify pro-
cess fragments that, as per the algorithm, should or should not be clustered, and
which personal factors determine the correct identification of cluster fragments
and noise, respectively. To that end, we estimated regression models that ex-
amined i) the Rand index between an individual’s clustering in comparison to the
DBSCAN (or HAC) technique, and ii) the percentage of correctly identified noise,
i.e., fragments that should not be clustered. Table 7 shows descriptive statistics of
the distribution of the dependent variables.

Table 7: Descriptive statistics of correct Noise and Correct Clustering indices

Metric Correct noise (percentage) Correct clustering (Rand)
DBSCAN HAC DBSCAN HAC

Mean 0.854 0.861 0.713 0.836
Std. Dev. 0.067 0.187 0.136 0.18
Minimum 0.667 0.444 0.438 0.349
Maximum 0.889 1 0.826 1

In estimating the regression models, we considered the following variables as
independent factors:

• the total score of process modeling competency (from 0-5) as per [22],

• the average total factor score for EPC familiarity [21],

• the process modeling experience in years,

• the number of days of training with EPC models within the last year, and

31

• the number of EPC models created or read within the last year.

The estimated linear regression models with the dependent variable Rand
(technique versus participant’s clustering) showed that none of these factors was a
significant determinant of the cluster similarity measure. In the interest of brevity
we omit the detailed description of the coefficient weights and loadings. The over-
all regression models showed insignificant fit to the data for both DBSCAN (F =
1.84, p = 0.20) and HAC (F = 1.16, p = 0.40), indicating that manually producing
clusters similar to the two algorithms is not dependent on expertise or experience
with process modeling.

In terms of correctly identifying noise, however, we found the two regression
models to show significant determinants. Table 8 summarizes the results. The
results show that correct noise identification was explained for 49% through mod-
eling expertise and 22% through experience factors. Notably, the overall process
modeling experience was a significant positive contributor to the correct identifi-
cation of clustering noise (p = 0.03 and 0.04), while EPCs training was a signifi-
cant negative contributor (in that participants with more training days performed
worse in terms of noise identification). Knowledge of modeling concepts appears
to be a positive factor, with one out two beta weights being significant (p = 0.01
and p = 0.20). These results can be interpreted as suggesting that noise identi-
fication, at least in part, is a function of expertise and experience, and thus that
algorithmic support is particularly beneficial in situations where such expertise or
experience cannot be provided by end users.

Table 8: Results from regression models for correct noise identification

Independent factor
Correct noise identification (DBSCAN) Correct noise identification (HAC)

St. Beta T (Sig.) St. Beta T (Sig.)

Proc. modeling know. score 0.76 3.43 0.01 0.37 1.37 0.2
EPCs familiarity -0.33 -0.75 0.48 0.22 0.41 0.69

Experience in years 0.65 2.56 0.03 0.77 2.47 0.04
EPC models created or read -0.08 -0.37 0.72 -0.33 -1.26 0.24

EPCs training days -0.5 -2.52 0.03 -0.61 -2.48 0.04
EPC Experience (months) -0.18 -0.37 0.72 -0.45 -0.77 0.46

R2 0.69 0.53
Adjusted R2 0.49 0.22

7. Related Work

Clone detection in software repositories is an active field of research [1, 2, 7].
According to [24, 2, 7], approaches in this field can be classified into: text compar-

32

ison, token comparison, metrics-based comparison, Abstract Syntax Tree (AST)
comparison (or more generally tree-based comparison), and Program Dependence
Graphs (PDG) comparison (or more generally graph-based comparison). Ap-
proaches for approximate clone detection can be found across all these categories.
For example, approximate clone detection based on text comparison is supported
by the NICAD [25], while CCFinder [26] adopts a more token-based comparison
for approximate clone detection.

Naturally, the methods closer to the scope of this article are the tree-based and
graph-based ones. Baxter et al. [27] describe a method for clone detection based
on ASTs. The method applies a hash function to subtrees of the AST in order
to distribute subtrees across buckets. Subtrees in the same bucket are compared
by testing for tree isomorphism. Another representative technique for tree-based
comparison is Deckard [28], which addresses scalability issues by extracting a
characteristic vector that approximates the AST in an Euclidian space and then
applies locality-based hashing to build clusters of similar vectors. The scope of
these latter techniques differs from ours in that RPSTs are not perfect trees. In-
stead, RPSTs contain rigid components that are irreducible and need to be treated
as subgraphs—thus for example tree isomorphism is not directly applicable.

An extension of Deckard to deal with PDGs has been proposed in [29]. The
idea here is to first extract a set of significant subgraphs that are likely to hold
(approximate) clone candidates. From each such subgraph, a forest of ASTs is
then generated. The Deckard approach is then applied in order to identify groups
of clones that are then filtered to remove redundant output. The technique relies
on the specific semantics of PDGs, in particular the notion of slicing which allows
to essentially extract sub-computations from a procedure. It is thus not directly
applicable to process models. Arguably, an adaptation could potentially be made
to process models, however, this would not necessarily lead to the identification of
fragments that modelers would perceive to be “similar”. In contrast, our proposed
techniques rely on a notion of similarity that has empirically been validated as
reflecting perceived process similarity by process modelers [3]. On the other hand,
the technique in [29] is designed to be highly scalable, and thus could be adapted
in settings where tens or hundreds of thousands of models were involved. Another
representative technique for detecting (exact) clones in PDGs is presented in [30].
This approach relies on a heuristic to approximate the set of maximal isomorphic
graphs of a graph and is geared specifically to maximal exact clone detection.
A more sophisticated technique that detects approximate clones in PDGs using
approximate subgraph isomorphism detection is GPLAG [31].

In the field of model-driven engineering, approximate clone detection has been

33

investigated in [32], [8], [33] and [34]. In [32] the authors present CloneDetec-
tive, a method for detecting clones in large repositories of Simulink/TargetLink
models from the automotive industry. Models are partitioned into connected com-
ponents which are compared pairwise using a heuristic subgraph matching al-
gorithm. These pairs are then clustered based on the sets of their node labels.
According to [8], CloneDetective suffers from low inaccuracy and low degree of
completeness in detection, mainly due to the fact that small clones are absorbed
by larger clone pairs. In other words, the algorithm tends to find as large clones as
possible, whereas in our approach we allow related fragments to belong to differ-
ent clusters, so that users can choose the abstraction level at which to standardize.
Moreover, this method is not very sensitive to approximate clones having small
differences. These cases commonly result from copy/pasting and as such they
should not be discarded. Moreover, they yield low standardization costs making
them easy to standardize. The work in [8] overcomes these problems by proposing
two methods for exact and approximate matching of clones. In particular, the sec-
ond method, namely aScan, represents graphs by a set of vectors built from graph
features: e.g. path lengths and vertex in/out degrees. An empirical study shows
that this feature-based approximate matching improves pre-processing and run-
ning times, while keeping a high precision. Despite these advantages, the method
proposed in [8] does not fulfill our requirements: The resulting clones may be
non-SESE fragments and the identified clusters do not satisfy any of the proper-
ties in Definition 5. The work in [33] detects clones in UML models, such as class
or activity diagrams. In this work, each object, its properties and child objects (all
called model elements) form a fragment. The similarity between two fragments
is computed by summing up the pairwise similarities of their respective elements.
This method is not suitable for our purposes as it does not consider structural sim-
ilarity, fragments are fixed to specific structures, and no clustering technique is
proposed.

Another approach to detect approximate clones, specifically in Simulink mod-
els is proposed in [34]. The idea of this latter technique is to transform the graph-
based models to normalized text form, and to then apply the NICAD text-based
technique for near-clone detection. This technique could be transposed to process
models subject to designing a suitable normalized text representation of process
models that would somehow preserve approximate clones. Simulink already pro-
vides a textual representation that turns out to be suitable for this purpose.

Refactoring business process models has been investigated in [3, 35]. In [3],
pairs of similar process fragments are identified and given as input to the user. In
contrast to our work, fragment similarity is exclusively based on label similarity

34

rather than a combination of label and structural similarity. Also, fragments are
considered pairwise (no clustering is performed). In [35], 11 process model refac-
toring techniques are identified and evaluated. Refactoring process fragments as
subprocesses is one of the techniques discussed, but no tool support to identify
refactoring opportunities is provided.

Clustering of process models has been dealt with in [36] and [37]. In both
cases process models are clustered rather than process fragments leading to a small
number of clusters. Using fragments instead of process models is more complex,
but for the purposes of standardization and reuse it is more suitable as a fragment
may be shared between process models, while the rest of these models may be
quite different.

In [38] an approach is described to synthesize a representative process model
from a collection of variants. This work does not seek to detect approximate
clones. Instead it assumes that a set of similar models or fragments is given as in-
put. The approach of [38] could be used after clone clustering in order to synthe-
size the centroid of a cluster (as opposed to a medoid as in DBSCAN). Whereas
the medoid of a cluster of fragments is one of the fragments in the cluster, the
centroid can be (and often is) a fragment that does not exist in the cluster. In our
experiments, we opted to only show fragments that exist in the input collection of
process models, as the insertion of artificially created fragments could potentially
create confusion among the subjects in the experiment.

Another body of related work is that on configurable process models [39],
which allow modelers to represent multiple variants of a given process in a sin-
gle model. When standardizing a cluster of clones as a single fragment, it would
be an option to represent the standardized fragment using a configurable process
modeling notation, in such a way as to keep track of variations across the orig-
inal clones. This having been said, the choice of representation of standardized
fragments is orthogonal to the contribution of this article and outside its scope.

This article is an extended version of our previous conference paper on the
subject [40]. The main extensions with respect to the conference paper are the
two empirical user evaluations of the proposed techniques (Section 6.3) and the
implementation of the proposed technique on the Apromore platform.

8. Conclusion

This article presented two techniques for retrieving clusters of approximate
clones for possible standardization and refactoring into shared subprocesses. Ad-
ditionally, the article put forward a measure of cluster quality (benefit-to-cost

35

ratio) intended to capture the potential standardizability of the cluster. An ex-
perimental evaluation showed that both techniques, coupled with the proposed
cluster quality measure, accurately retrieve clusters resulting from copy-pasting
activities followed by independent modifications to the copied fragments. Other
experiments showed that the proposed techniques produce clusters that are simi-
lar to those produced by human subjects. Finally, it was shown that the proposed
techniques produce clusters that human subjects perceive to be amenable for stan-
dardization – with the DBSCAN technique being able to better match perceived
standardizability than the HAC one.

Hence, it can be concluded that the proposed techniques provide a basis for
identifying clusters of approximate clones that are amenable to standardization.
However, a question that remains open is how a clone cluster should be standard-
ized into a single reference fragment in such a way that the stakeholders involved
in the management and execution of the process are satisfied with the standard-
ized process. We started with the hypothesis that the medoid of the cluster could
serve as a reference fragment towards which all other fragments could be stan-
dardized. This hypothesis was not backed by the experimental results, where
subjects almost always designated the largest fragment in the cluster as the ref-
erence fragment, thus favoring what could be called “standardization by union”.
The question thus opened is whether in practice, approximate clones would be
standardized towards their union or towards a fragment that is smaller than their
union. Further empirical studies are required to shed light on this question. In
this respect, we envision empirical studies that would investigate the relation be-
tween non-standardized process models and their final versions after undergoing
standardization.

Another direction for future work is to improve the scalability of the proposed
techniques, for example by optimizing the computation of the distance matrix.
One way to achieve this is by efficiently computing better lower-bounds of the
distance between pairs of fragments, so that the need to calculate exact distances
is reduced to cases of pairs of fragments that are relatively close to one another.

Acknowledgments NICTA is funded by the Australian Government (Department
of Broadband, Communications and the Digital Economy) and the Australian Re-
search Council through the ICT Centre of Excellence program. This work is partly
funded by the EU Regional Development Funds via the Estonian Centre of Excel-
lence in Computer Science.

36

References

[1] R. Koschke, Identifying and Removing Software Clones, in: Software Evo-
lution, Springer, 2008.

[2] C. K. Roy, J. R. Cordy, R. Koschke, Comparison and evaluation of code
clone detection techniques and tools: A qualitative approach, Sci. Comput.
Program. 74 (7) (2009) 470–495.

[3] R. Dijkman, B. Gfeller, J. Küster, H. Völzer, Identifying refactoring oppor-
tunities in process model repositories, Information & Software Technology
53 (9) (2011) 937–948.

[4] T. H. Davenport, The coming commoditization of processes, Harvard Busi-
ness Review 83 (6) (2005) 100–108.

[5] B. Muenstermann, A. Eckhardt, T. Weitzel, The performance impact of busi-
ness process standardization: An empirical evaluation of the recruitment
process, Business Process Management Journal 16 (1) (2010) 29–56.

[6] M. Schäfermeyer, C. Rosenkranz, R. Holten, The impact of business pro-
cess complexity on business process standardization – an empirical study,
Business and Information Systems Engineering 4 (5) (2012) 261–270.

[7] D. Rattan, R. K. Bhatia, M. Singh, Software clone detection: A systematic
review, Information & Software Technology 55 (7) (2013) 1165–1199.

[8] N. Pham, H. Nguyen, T. Nguyen, J. Al-Kofahi, T. Nguyen, Complete and
Accurate Clone Detection in Graph-based Models, in: Proceedings of ICSE,
IEEE, 2009, pp. 276–286.

[9] M. Dumas, L. Garcı́a-Bañuelos, M. L. Rosa, R. Uba, Fast detection of exact
clones in business process model repositories, Information Systems 38 (4)
(2013) 619–633.

[10] M. La Rosa, H. Reijers, W. Aalst, R. Dijkman, J. Mendling, M. Dumas,
L. Garcı́a-Bañuelos, APROMORE: An Advanced Process Model Reposi-
tory, Expert Systems With Applications 38 (6).

[11] R. Dijkman, M. Dumas, B. van Dongen, R. Käärik, J. Mendling, Similarity
of business process models: Metrics and evaluation, Information Systems
36 (2) (2011) 498–516.

37

[12] B. Messmer, Efficient Graph Matching Algorithms, Ph.D. thesis, University
of Bern, Switzerland (1995).

[13] J. Vanhatalo, H. Völzer, J. Koehler, The Refined Process Structure Tree, Data
and Knowledge Engineering 68 (9) (2009) 793–818.

[14] G. Keller, T. Teufel, SAP R/3 Process Oriented Implementation: Iterative
Process Prototyping, Addison-Wesley, 1998.

[15] P.-N. Tan, M. Steinbach, V. Kumar, Introduction to Data Mining, Addison-
Wesley, 2005.

[16] C. Roy, J. R. Cordy, A mutation/injection-based automatic framework for
evaluating code clone detection tools, in: Proc. of ICST Workshops, IEEE,
2009, pp. 157–166.

[17] Y. Zhao, G. Karypis, Evaluation of hierarchical clustering algorithms for
document datasets, in: Proceedings of CIKM, ACM, 2002, pp. 515–524.

[18] M. L. Rosa, A. H. M. ter Hofstede, P. Wohed, H. A. Reijers, J. Mendling,
W. M. P. van der Aalst, Managing process model complexity via concrete
syntax modifications, IEEE Trans. Industrial Informatics 7 (2) (2011) 255–
265.

[19] M. L. Rosa, P. Wohed, J. Mendling, A. H. M. ter Hofstede, H. A. Reijers,
W. M. P. van der Aalst, Managing process model complexity via abstract
syntax modifications, IEEE Trans. Industrial Informatics 7 (4) (2011) 614–
629.

[20] J. Recker, M. L. Rosa, Understanding user differences in open-source work-
flow management system usage intentions, Information Systems 37 (3)
(2012) 200–212.

[21] J. Recker, Continued use of process modeling grammars: the impact of in-
dividual difference factors, European Journal of Information Systems 19 (1)
(2010) 76–92.

[22] J. Mendling, M. Strembeck, J. Recker, Factors of process model compre-
hension - findings from a series of experiments, Decision Support Systems
53 (1) (2012) 195–206.

38

[23] W. M. Rand, Objective criteria for the evaluation of clustering methods,
Journal of the American Statistical association 66 (336) (1971) 846–850.

[24] S. Bellon, R. Koschke, G. Antoniol, J. Krinke, E. Merlo, Comparison and
Evaluation of Clone Detection Tools, IEEE Trans. on Software Engineering
33 (9) (2007) 577–591.

[25] C. Roy, J. R. Cordy, Nicad: Accurate detection of near-miss intentional
clones using flexible pretty-printing and code normalization, in: Proc. of
the ICPC, IEEE, 2008, pp. 172–181.

[26] T. Kamiya, S. Kusumoto, K. Inoue, Ccfinder: A multilinguistic token-based
code clone detection system for large scale source code, IEEE Trans. Soft-
ware Eng. 28 (7) (2002) 654–670.

[27] I. D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, L. Bier, Clone Detection
Using Abstract Syntax Trees, in: Proceedings of ICSM, IEEE, 1998, pp.
368–377.

[28] L. Jiang, G. Misherghi, Z. Su, S. Glondu, Deckard: Scalable and accurate
tree-based detection of code clones, in: Proc. of ICSE, IEEE, 2007, pp. 96–
105.

[29] M. Gabel, L. Jiang, Z. Su, Scalable detection of semantic clones, in: Proc.
of ICSE, ACM, 2008, pp. 321–330.

[30] J. Krinke, Identifying Similar Code with Program Dependence Graphs, in:
WCRE, 2001.

[31] C. Liu, C. Chen, J. Han, P. S. Yu, Gplag: detection of software plagiarism
by program dependence graph analysis, in: Proc. of KDD, ACM, 2006, pp.
872–881.

[32] F. Deissenboeck, B. Hummel, E. Jürgens, B. Schätz, S. Wagner, J.-F. Girard,
S. Teuchert, Clone Detection in Automotive Model-based Development, in:
Proceedings of ICSE, 2008.

[33] H. Storrle, Towards clone detection in UML domain models, Software and
Systems Modeling 12 (2) (2013) 307–329.

39

[34] M. H. Alalfi, J. R. Cordy, T. R. Dean, M. Stephan, A. Stevenson, Models
are code too: Near-miss clone detection for simulink models, in: In Proc. of
ICSM, IEEE, 2012, pp. 295–304.

[35] B. Weber, M. Reichert, J. Mendling, H. A. Reijers, Refactoring large process
model repositories, Computers in Industry 62 (5) (2011) 467–486.

[36] J.-Y. Jung, J. Bae, Workflow clustering method based on process similarity,
in: ICCSA, Vol. 3981 of LNCS, Springer, 2006.

[37] J. Melcher, D. Seese, Visualization and clustering of business process col-
lections based on process metric values, in: SYNASC, IEEE, 2008.

[38] C. Li, M. Reichert, A. Wombacher, The Minadept clustering approach for
discovering reference process models out of process variants, International
Journal of Cooperative Information Systems 19 (3-4) (2010) 159–203.

[39] M. Rosemann, W. van der Aalst, A Configurable Reference Modelling Lan-
guage, Information Systems 32 (1) (2007) 1–23.

[40] C. C. Ekanayake, M. Dumas, L. Garcı́a-Bañuelos, M. L. Rosa, A. H. M. ter
Hofstede, Approximate clone detection in repositories of business process
models, in: Proceedings of BPM, Springer, 2012, pp. 302–318.

40

